✨ Diagram Tingkat Energi Atom Berelektron Banyak Menurut Aturan Aufbau Adalah

GEJALAKUANTUM 6 maka penyebut persamaan energi rata-rata tersebut dapat dituliskan. TEORI ATOM MEKANIKA KUANTUM DAN SISTEM PERIODIK. Mata Pelajaran : KIMIA K e l a s : XI Nomor Modul : KIM.XI.01. Penulis Penyunting Materi Penyunting Media. : Niyata Sirat, S.Pd : Drs. Ucu Cahyana, M.Si : Drs. Slamet Soetanto, M.Si. Untukatom berelektron banyak, tingkat energi 3d sangat dekat dengan tingkat energi 4s. Akan tetapi, energi total atom tidak hanya bergantung pada jumlah energi orbital tetapi juga pada energi tolakan antara elektron-elektron dalam orbital-orbital ini (masing-masing orbital dapat menampung hingga dua elektron, seperti yang akan kita lihat pada Tingkattingkat energi dan subkulit elektron dari periode ke-1 sampai ke-7 digambarkan seperti Gambar 1.5(a). Menurut Aufbau, elektron dalam atom sedapat mungkin memiliki energi yang terendah maka berdasarkan urutan tingkat energi orbital, pengisian konfigurasi elektron dimulai dari tingkat energi yang paling rendah ke tingkat energi yang Buatatom hidrogen, sebagaimana dalam model atom Bohr, elektron pada kulit ke-n memiliki energi sebesar: En = (-13,6/n 2) eV. Juga ada buat atom berelektron banyak (terdiri atas lebih dari satu elektron), energi elektron pada kulit ke-n, yaitu: En = (-13,6Z 2 /n 2) eV. Dimana Z adalah nomor atom. AtomX dengan n=4, l =2, m=+1, s=+½ maka atom X memiliki jumlah elektron sebanyak n = 4 (berarti pada kulit ke-4) l = 2 (berarti subkulit d) m = +1 (berarti pada kotak ke-4 sebelah kiri dari 5 kotak yang ada) s = +½ (arah elektron ke atas) Jadi konfigurasi dalam bentuk diagram orbital adalah Artinyatidak ada elektron yang mempunyai kedudukan yang sama dalam atom. D. Aktivitas Pembelajaran Dalam aktivitas pembelajaran 2 ini diharapkan pembaca mencoba menganalisis persoalan-persoalan berikut beserta pemecahannya agar diperoleh kemampuan pemahaman yang menyeluruh dari setiap indikator yang diharapkan dikuasai. Elektronelektron dalam mengelilingi inti atom berada pada tingkat-tingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum (perhatikan Gambar 1.). Gambar 1. Menurut Bohr, elektron berada pada tingkat energi tertentu. Tiapkulit atau setiap tingkat energi ditempati oleh sejumlah elektron. Jumlah elektron maksim u m yang dapat menempati tingkat energi harus memenuhi rumus Pauli = 2n 2. Untuk n =3 jumlah elektron maksimum 2 x 3 2 = 18. Untuk l = 1 (subkulit p), harga m hanya -1, 0, dan +1 sehingga tidak mungkin +2. Tidakdapat menjelaskan tingkat-tingkat energi atom hidrogen. Tidak dapat menerangkan struktur atom berelektron banyak. Pasangan pernyataan yang benar tentang kelemahan model atom tersebut adalah . A. (1) dan (2) 24 Y : 1s 2 2s 2 2p 6 3s2 3p 6 4s 1 3d 5 (menyimpang dari aturan Aufbau karena lebih stabil dengan keadaan subkulit s dan d 0OVjm. Ilustrasi aturan aufbau. Foto Unsplash/Mehdi MirzaieDalam belajar kimia atau fisika, salah satu materi yang diajarkan adalah konfigurasi elekton. Konfigurasi elektron menandakan penataan elektron dalam suatu atom. Salah satu penetapan orbital atom adalah aturan aufbau memfokuskan pada proses di sekitaran elektron. Hal ini membantu dalam memprediksi secara teoritis konfigurasi elektron suatu unsur dalam tabel Aufbau dalam Ilmu KimiaIlustrasi aturan aufbau. Foto Unsplash/BoliviaInteligenteAufbau adalah kata yang diambil dari bahasa Jerman yang artinya kontruksi’. Nama ini diambil dari kata Aufbauprinzip, prinsip membangun’. Meski begitu, nama ini bukan diberi oleh seorang Niesl Bohr berusaha menyelidiki sifat atom dan karateristiknya. Bohr berusaha menyempurnakan kontribusi Ernest Rutheford. Dari sini, ia mendirikan premis-premis menekankan bahwa inti atom tetap berada di pusat dikelilingi oleh elektron yang mengubah tingkat karena kehilangan atau peningkatan aturan aufbau, elekton akan menempati orbital yang memiliki energi terendah terlebih dahulu yang memilki energi lebih tinggi. Dengan begitu, atom terlebih dahulu berada pada tingkat energi yang menyusun energi elekton dalam aturan aufbau, bilangan kuantum utama dengan n=1. Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau 1=0. Jadi, urutan tingkat energinya adalah s < p < d < f < [1 = n—1]Dikutip dari buku Serial Modul Pembelajaran Berorientasi Nature Of Science NOS Kimia Umum Atom, Molekul, dan Sifat Zat oleh Yusran Khery, dkk 2019 80, pada aturan aufbau, pengisian orbital dimulai dari orbital 1s, 2s, tingkat energi dari yang terendah ke tingkat energi paling tinggi, yakni1s < 2s < 2p < 3s < 3p <4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < dan konfigurasi elektron 12Mg berdasarkan aturan aufbau!Apabila mengisi elektron pada orbital yang memiliki energi terendah dalam aturan aufbau yakniItulah penjelasan singkat tentang aturan aufbau dalam menetapkan orbital energi. Semoga penjelasan singkat di atas bermanfaat sebagai pembelajaran untuk memperdalam materi tentang konfigurasi elektron. MZM Struktur Atom Atomic Structure adalah teori terhadap nukleus, di pusat atom, terdiri dari proton dan neutron. Mengorbit di sekitar nukleus adalah mekanika klasik seperti Hukum Newton dapat menjelaskan materi berukuran makro dengan akurat. Akan tetapi, hukum tersebut tidak mampu menjelaskan gejala yang ditimbulkan oleh materi berukuran mikro, seperti elektron, atom, atau molekul. Materi berukuran mikro hanya dapat dijelaskan dengan teori mekanika atom berdasarkan mekanika kuantum dirumuskan oleh Werner Heisenberg dan Erwin Schrodinger. Selain itu, sumbangan pemikiran terhadap teori ini diberikan juga oleh Paul Dirac, Max Born, dan teori atom mekanika kuantum dapat menjelaskan materi berskala mikro seperti elektron dalam atom sehingga penyusunan keberadaan elektron dalam atom dapat digambarkan melalui penulisan konfigurasi elektron dan diagram orbital. Bagaimanakah menuliskan konfigurasi elektron dan diagram orbital? Simak Materi berikut Teori Atom ModernTeori atom Bohr cukup berhasil dalam menjelaskan gejala spektrum atom hidrogen, bahkan dapat menentukan jari-jari atom hidrogen dan tingkat energi atom hidrogen pada keadaan dasar berdasarkan postulat momentum sudut dengan perkembangan ilmu pengetahuan, ditemukan fakta-fakta baru yang menunjukkan adanya kelemahan pada teori atom Bohr. Oleh karena itu, dikembangkan teori atom mekanika kuantumTeori Atom BohrSebagaimana telah Anda ketahui, teori atom Bohr didasarkan pada empat postulat sebagai dalam mengelilingi inti atom berada pada tingkattingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum perhatikan Gambar elektron berada pada tingkat energi tertentu, misalnya n=1, energi elektron tetap. Artinya, tidak ada energi yang diemisikan dipancarkan maupun dapat beralih dari satu tingkat energi ke tingkat energi lain disertai perubahan energi. Besarnya perubahan energi sesuai dengan persamaan Planck, E= energi elektron yang dibolehkan memiliki momentum sudut tertentu. Besar momentum sudut ini merupakan kelipatan dari h/2p atau nh/2p, n adalah bilangan kuantum dan h tetapan Peralihan Antartingkat EnergiModel atom Bohr dapat menerangkan spektrum atom hidrogen secara memuaskan. Menurut Bohr, cahaya akan diserap atau diemisikan dengan frekuensi tertentu sesuai persamaan Planck melalui peralihan elektron dari satu tingkat energi ke tingkat energi yang lain. Jika atom hidrogen menyerap energi dalam bentuk cahaya maka elektron akan beralih ke tingkat energi yang lebih jika atom hidrogen mengemisikan cahaya maka elektron akan beralih ke tingkat energi yang lebih rendah. Pada keadaan stabil, atom hidrogen memiliki energi terendah, yakni elektron berada pada tingkat energi dasar n=1. Jika elektron menghuni n>1, dinamakan keadaan tereksitasi. Keadaan tereksitasi ini tidak stabil dan terjadi jika atom hidrogen menyerap sejumlah hidrogen bohrAtom hidrogen pada keadaan tereksitasi tidak stabil sehingga energi yang diserap akan diemisikan kembali menghasilkan garis-garis spektrum perhatikan Gambar Kemudian, elektron akan turun ke tingkat energi yang lebih rendah. Nilai energi yang diserap atau diemisikan dalamtransisi elektron bergantung pada transisi antartingkat energi dirumuskan sebagai berikut b. Kelemahan Model Atom BohrGagasan Bohr tentang pergerakan elektron mengitari inti atom seperti sistem tata surya membuat teori atom Bohr mudah dipahami dan dapat diterima pada waktu itu. Akan tetapi, teori atom Bohr memiliki beberapa kelemahan, di antaranya sebagai atom ditempatkan dalam medan magnet maka akan terbentuk spektrum emisi yang rumit. Gejala ini disebut efek Zeeman perhatikan Gambar atom ditempatkan dalam medan listrik maka akan menghasilkan spektrum halus yang rumit. Gejala ini disebut efek fisika Jerman, Sommerfeld menyarankan, disamping orbit berbentuk lingkaran juga harus mencakup orbit berbentuk elips. Hasilnya, efek Zeeman dapat dijelaskan dengan model tersebut, tetapi model atom Bohr-Sommerfeld tidak mampu menjelaskan spektrum dari atom berelektron tahun setelah teori Bohr lahir, muncul gagasan de Broglie tentang dualisme materi, disusul Heisenberg tentang ketidakpastian posisi dan momentum partikel. Berdasarkan gagasan tersebut dan teori kuantum dari Planck, Schrodinger berhasil meletakkan dasar-dasar teori atom terkini, dinamakan teori atom mekanika Atom Mekanika KuantumKegagalan teori atom Bohr dalam menerangkan spektra atom hidrogen dalam medan magnet dan medan listrik, mendorong Erwin Schrodinger mengembangkan teori atom yang didasarkan pada prinsipprinsip mekanika atom mekanika kuantum mirip dengan yang diajukan oleh model atom Bohr, yaitu atom memiliki inti bermuatan positif dikelilingi oleh elektron-elektron bermuatan negatif. Perbedaannya terletak pada posisi elektron dalam mengelilingi inti atom dari inti menurut bohrMenurut Bohr, keberadaan elektron-elektron dalam mengelilingi inti atom berada dalam orbit dengan jarak tertentu dari inti atom, yang disebut jari-jari atom perhatikan Gambar diatas.Menurut teori atom mekanika kuantum, posisi elektron dalam mengelilingi inti atom tidak dapat diketahui secara pasti sesuai prinsip ketidakpastian Heisenberg. Oleh karena itu, kebolehjadian peluang terbesar ditemukannya elektron berada pada orbit atom tersebut. Dengan kata lain, orbital adalah daerah kebolehjadian terbesar ditemukannya elektron dalam model atom mekanika kuantum, gerakan elektron dalam mengelilingi inti atom memiliki sifat dualisme sebagaimana diajukan oleh de Broglie. Oleh karena gerakan elektron dalam mengelilingi inti memiliki sifat seperti gelombang maka persamaan gerak elektron dalam mengelilingi inti harus terkait dengan fungsi gelombang. Dengan kata lain, energi gerak kinetik elektron harus diungkapkan dalam bentuk persamaan fungsi SchrodingerPersamaan yang menyatakan gerakan elektron dalam mengelilingi inti atom dihubungkan dengan sifat dualisme materi yang diungkapkan dalam bentuk koordinat ini dikenal sebagai persamaan Schrodinger. Dari persamaan Schrodinger ini dihasilkan tiga bilangan kuantum, yaitu - bilangan kuantum utama n, - bilangan kuantum azimut A , - dan bilangan kuantum magnetikm.Ketiga bilangan kuantum ini merupakan bilangan bulat sederhana yang menunjukkan peluang adanya elektron di sekeliling inti atom. Penyelesaian persamaan Schrodinger menghasilkan tiga bilangan kuantum. Orbital diturunkan dari persamaan Schrodinger sehingga terdapat hubungan antara orbital dan ketiga bilangan kuantum Bilangan Kuantum Utama nBilangan kuantum utama n memiliki nilai n = 1, 2, 3, …, n. Bilangan kuantum ini menyatakan tingkat energi utama elektron dan sebagai ukuran kebolehjadian ditemukannya elektron dari inti atom. Jadi, bilangan kuantum utama serupa dengan tingkat-tingkat energi elektron atau orbit menurut teori atom Bohr. Bilangan kuantum utama merupakan fungsi jarak yang dihitung dari inti atom sebagai titik nol. Jadi, semakin besar nilai n, semakin jauh jaraknya dari karena peluang menemukan elektron dinyatakan dengan orbital maka dapat dikatakan bahwa orbital berada dalam tingkat-tingkat energi sesuai dengan bilangan kuantum utama n. Pada setiap tingkat energi terdapat satu atau lebih bentuk orbital. Semua bentuk orbital ini membentuk kulit shell. Kulit adalah kumpulan bentuk orbital dalam bilangan kuantum utama yang ini diberi lambang mulai dari K, L, M, N, …, dan seterusnya. Hubungan bilangan kuantum utama dengan lambang kulit sebagai Bilangan Kuantum Azimut A Bilangan kuantum azimut disebut juga bilangan kuantum momentum sudut, dilambangkan dengan A. Bilangan kuantum azimut menentukan bentuk orbital. Nilai bilangan kuantum azimut adalah A= n–1. Oleh karena nilai n merupakan bilangan bulat dan terkecil sama dengan satu maka harga A juga merupakan deret bilangan bulat 0, 1, 2, …, n–1. Jadi, untuk n=1 hanya ada satu harga bilangan kuantum azimut, yaitu 0. Berarti, pada kulit K n=1 hanya terdapat satu bentuk orbital. Untuk n=2 ada dua harga bilangan kuantum azimut, yaitu 0 dan 1. Artinya, pada kulit L n=2 terdapat dua bentuk orbital, yaitu orbital yang memiliki nilai A=0 dan orbital yang memiliki nilai A=1Pada pembahasan sebelumnya, dinyatakan bahwa bentuk-bentuk orbital yang memiliki bilangan kuantum utama sama membentuk kulit. Bentuk orbital dengan bilangan kuantum azimut sama dinamakan subkulit. Jadi, bilangan kuantum azimut dapat juga menunjukkan jumlah subkulit dalam setiap kulit. Masing-masing subkulit diberi lambang dengan s, p, d, f, …, dan seterusnya. Hubungan subkulit dengan lambangnya adalah sebagai berikutcontoh kuantum azimut c. Bilangan Kuantum Magnetik mBilangan kuantum magnetik disebut juga bilangan kuantum orientasi sebab bilangan kuantum ini menunjukkan orientasi arah orbital dalam ruang atau orientasi subkulit dalam kulit. Nilai bilangan kuantum magnetik berupa deret bilangan bulat dari –m melalui nol sampai +m. Untuk A=1, nilai m=0, ±l. Jadi, nilai bilangan kuantum magnetik untuk A=1 adalah –l melalui 0 sampai + kuantum magnetikSubkulit-s A =0 memiliki harga m=0, artinya subkulit-s hanya memiliki satu buah orbital. Oleh karena m=0, orbital-s tidak memiliki orientasi dalam ruang sehingga bentuk orbital-s dikukuhkan berupa bola yang A=1 memiliki nilai m= –1, 0, +1. Artinya, subkulit-p memiliki tiga buah orientasi dalam ruang 3 orbital, yaitu orientasi pada sumbu-x dinamakan orbital px , orientasi pada sumbu-y dinamakan orbital py , dan orientasi pada sumbu-z dinamakan orbital pz .Subkulit-d A=2 memiliki harga m= –2, –1, 0, +1, +2. Artinya, subkulit-d memiliki lima buah orientasi dalam ruang 5 orbital, yaitu pada bidang-xy dinamakan orbital dxy, pada bidang-xz dinamakan orbital dxz, pada bidang-yz dinamakan orbital dyz, pada sumbu x2 –y2 dinamakan orbital −2 2 dx y , dan orientasi pada sumbu z2 dinamakan orbital 2 dz .Contoh orientasi orbital dapat dilihat pada Gambar d. Bilangan Kuantum Spin sDi samping bilangan kuantum n, A , dan m, masih terdapat satu bilangan kuantum lain. Bilangan kuantum ini dinamakan bilangan kuantum spin, dilambangkan dengan s. Bilangan kuantum ini ditemukan dari hasil pengamatan radiasi uap perak yang dilewatkan melalui medan magnet, oleh Otto Stern dan W. medan magnet, berkas cahaya dari uap atom perak terurai menjadi dua berkas. Satu berkas membelok ke kutub utara magnet dan satu berkas lagi ke kutub selatan magnet perhatikan Gambar Berdasarkan pengamatan tersebut, disimpulkan bahwa atom-atom perak memiliki sifat magnet. Pengamatan terhadap atom-atom unsur lain, seperti atom Li, Na, Cu, dan Au selalu menghasilkan gejala yang tersebut memiliki jumlah elektron ganjil. Munculnya sifat magnet dari berkas uap atom disebabkan oleh spin atau putaran elektron pada porosnya. Berdasarkan percobaan Stern-Gerlach, dapat disimpulkan bahwa ada dua macam spin elektron yang berlawanan arah dan saling atom yang jumlah elektronnya ganjil, terdapat sebuah elektron yang spinnya tidak ada yang meniadakan. Akibatnya, atom tersebut memiliki medan elektron dinyatakan dengan bilangan kuantum spin. Bilangan kuantum ini memiliki dua harga yang berlawanan tanda, yaitu +½ dan –½ . Tanda + menunjukkan putaran searah jarum jam dan tanda – arah sebaliknya perhatikan Gambar Adapun harga ½ , menyatakan fraksi elektron. B. Bentuk OrbitalBentuk orbital ditentukan oleh bilangan kuantum azimut. Bilangan kuantum ini diperoleh dari suatu persamaan matematika yang mengandung trigonometri sinus dan cosinus. Akibatnya, bentuk orbital ditentukan oleh bentuk trigonometri dalam memiliki bilangan kuantum azimut, A= 0 dan m= 0. Oleh karena nilai m sesungguhnya suatu tetapan tidak mengandung trigonometri maka orbital-s tidak memiliki orientasi dalam ruang sehingga orbital-s ditetapkan berupa bola simetris di sekeliling bola menyatakan peluang terbesar ditemukannya elektron dalam orbital-s. Hal ini bukan berarti semua elektron dalam orbital-s berada di permukaan bola, tetapi pada permukaan bola itu peluangnya tertinggi ≈ 99,99%, sisanya boleh jadi tersebar di dalam bola, lihat Gambar sOrbital-pOrbital-p memiliki bilangan kuantum azimut, A= 1 dan m= 0, ±l. Oleh karena itu, orbital-p memiliki tiga orientasi dalam ruang sesuai dengan bilangan kuantum magnetiknya. Oleh karena nilai m sesungguhnya mengandung sinus maka bentuk orbital-p menyerupai bentuk sinus dalam ruang, seperti ditunjukkan pada Gambar orbital-p memiliki bentuk yang sama, tetapi berbeda dalam orientasinya. Orbital-px memiliki orientasi ruang pada sumbu-x, orbital-py memiliki orientasi pada sumbu-y, dan orbital-pz memiliki orientasi pada sumbu-z. Makna dari bentuk orbital-p adalah peluang terbesar ditemukannya elektron dalam ruang berada di sekitar sumbu x, y, dan z. Adapun pada bidang xy, xz, dan yz, peluangnya memiliki bilangan kuantum azimut A = 2 dan m = 0, ±1, ±2. Akibatnya, terdapat lima orbital-d yang melibatkan sumbu dan bidang, sesuai dengan jumlah bilangan kuantum magnetiknya. Orbital-d terdiri atas orbital- 2 dz , orbital- xz d , orbital- xy d , orbital- yz d , dan orbital- −2 2 dx y perhatikan Gambar dxy, dxz, dyz, dan −2 2 dx y memiliki bentuk yang sama, tetapi orientasi dalam ruang berbeda. Orientasi orbital-dxy berada dalam bidang xy, demikian juga orientasi orbital-orbital lainnya sesuai dengan tandanya. Orbital −2 2 dx y memiliki orientasi pada sumbu x dan sumbu y. Adapun orbital 2 dz memiliki bentuk berbeda dari keempat orbital yang orbital ini berada pada sumbu z dan terdapat “donat” kecil pada bidang-xy. Makna dari orbital-d adalah, pada daerah-daerah sesuai tanda dalam orbital xy, xz, yz, x2 –y2 , z2 menunjukkan peluang terbesar ditemukannya elektron, sedangkan pada simpul-simpul di luar bidang memiliki peluang paling kecil. Bentuk orbital-f dan yang lebih tinggi dapat dihitung secara matematika,tetapi sukar untuk digambarkan atau diungkapkan kebolehjadiannya sebagaimana orbital-s, p, dan d. Kesimpulan umum dari hasil penyelesaian persamaan Schrodinger dapat dirangkum sebagai berikut C. Konfigurasi Elektron Atom PolielektronPersamaan Schrodinger hanya dapat diterapkan secara eksak untuk atom berelektron tunggal seperti hidrogen, sedangkan pada atom berelektron banyak tidak dapat utama pada atom berelektron banyak adalah bertambahnya jumlah elektron sehingga menimbulkan tarikmenarik antara elektron-inti dan tolak-menolak antara elektron-elektron semakin rumit. Oleh karena itu, untuk atom berlektron banyak digunakan metode pendekatan berdasarkan hasil penelitian dan teori para Energi OrbitalPada atom berelektron banyak, setiap orbital ditandai oleh bilangan kuantum n, A, m, dan s. Bilangan kuantum ini memiliki arti sama dengan yang dibahas sebelumnya. Perbedaannya terletak pada jarak orbital dari inti. Pada atom hidrogen, setiap orbital dengan nilai bilangan kuantum utama sama memiliki tingkat-tingkat energi sama atau terdegenerasi. Misalnya, orbital 2s dan 2p memiliki tingkat energi yang sama. Demikian pula untuk orbital 3s, 3p, dan atom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Misalnya, orbital 2s dan 2p memiliki tingkat energi berbeda, yaitu energi orbital 2p lebih tinggi. Perbedaan tingkat energi elektron pada atom hidrogen dan atom berelektron banyak ditunjukkan pada Gambar tingkat energiPerbedaan tingkat energi ini disebabkan oleh elektron yang berada pada kulit dalam menghalangi elektron-elektron pada kulit bagian luar. Sebagai contoh, elektron pada orbital 1s akan tolak-menolak dengan elektron pada orbital-2s dan 2p sehingga orbital-2s dan 2p tidak lagi sejajar terdegenerasi seperti pada atom ini menyebabkan elektron-elektron dalam orbital-2s memiliki peluang lebih besar ditemukan di dekat inti daripada orbital-2p orbital-2s lebih dekat dengan inti.Distribusi Elektron dalam AtomKulit terdiri atas subkulit yang berisi orbital-orbital dengan bilangan kuantum utama yang sama. Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n²contoh distribusi elektronSubkulit terdiri atas orbital-orbital yang memiliki bilangan kuantum azimut yang sama. Jumlah orbital, dalam setiap subkulit dinyatakan dengan rumus 2 A + 1. Oleh karena setiap orbital maksimum dihuni oleh dua elektron maka jumlah elektron dalam setiap subkulit dinyatakan dengan rumus 22 A + 1.Aturan dalam Konfigurasi ElektronPenulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur Aturan Membangun AufbauAturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah lihat diagram tingkat energi orbital pada Gambar tingkat energi orbital aufbauTingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n.Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau A= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ A = n–1].Terdapat aturan tambahan, yaitu aturan n+ A. Menurut aturan ini, untuk nilai n+ A sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil,contoh2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan nilai n+ A berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ A lebih kecil,contoh4s 4+0 = 4 < 3d 3+2 =5.Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < …b. Aturan HundAturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron-elektron tidak berpasangan sebelum semua orbital dihuni. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz , px , py . Oleh karena itu, energi paling rendah dicapai jika spin elektron Prinsip Larangan PauliMenurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, A, m samamaka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, …, dan seterusnya. Hal ini sesuai dengan rumus 22 A + 1Penulisan Konfigurasi ElektronUntuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbitalorbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih orbital dengan tingkat energi sama, seperti px , py , pz , diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px , py , atau pz . Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli perhatikan Gambar Penulisan konfigurasi elektron dapat diringkas sebab dalam kimia yang penting adalah konfigurasi elektron pada kulit terluar atau elektron valensi. Contoh konfigurasi elektron atom natrium dapat ditulis sebagai11Na [Ne] 3s1 .Lambang [Ne] menggantikan penulisan konfigurasi elektron bagian dalam10Ne 1s2 2s2 2p6 . – Paradigma atom mekanika kuantum menyatakan bahwa elektron subur puas orbital-orbital elemen. Atom-partikel tersebut menempati orbital sesuai dengan susunannya, atau nan disebut andai konfigurasi elektron. Kebiasaan n domestik konfigurasi elektron terdiri berasal tiga yakni Cara Aufbau, Aturan Hund, dan Larangan Pauli. Prinsip Aufbau Dilansir dari Encyclopaedia Britannica, Kaidah Aufbau dikemukaan maka itu fisikawan Denmark bernama Niels Bohr pada tahun 1920. Baca juga Ideal Partikel Bohr Pendirian Aufbau menyatakan bahwa sreg kondisi radiks, elektron akan menempati indra peraba elektron dengan energi yang makin kurang menuju energi yang kian hierarki. Prinsip Aufbau digambarkan intern diagram berikut aturan Aufbauf Sreg gambar terlihat bahwa konfigurasi elektron dengan Mandu Aufbau bergantung pada penjumlahan kodrat kuantum utama n dan kodrat kuantum azimuth l. Sa-puan energi orbital atom dari nan minimal abnormal ke yang minimum tinggi yakni 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, dan seterusnya. Maka elektron akan menempati sub alat peraba 1s malar-malar silam mentah menempati sub alat peraba 2s. Pada subkulit s hanya boleh ditempati oleh 2 elektron. Pada subkulit p hanya boleh ditempati 6 elektron. Pada sub alat peraba d hanya boleh ditempati 10 elektron, dan sreg indra peraba f hanya boleh ditempati 14 elektron. Baca sekali lagi Lengkap Atom Mekanika Kuantum Larangan Pauli Seperti namanya, Pemali Pauli melarang adanya sepasang elektron dengan kredit takdir kuantum spin yang sama dalam satu orbital. Misalkan suatu atom memiliki 2 elektron yang mendiami orbital 1s, maka konfigurasi elektronnya menurut larangan pauli ditunjukkan makanya gambar a, b atau c? silmi larangan pauli Jawabannya, konfigurasi elektronnya ditunjukkan maka itu bagan c, karena dagi elektron tidak dapat memiliki arah spin elektron nan sama. Kebiasaan Hund Dilansir pecah Chemistry LibreTexts, pada Aturan Hund, dijelaskan bahwa intern kondisi stabil, elektron akan menempati subkulit secara sendiri-sendiri dengan nilai kuantum spin yang sama. Baca juga Komplet Molekul Rutherford Jika orbital mutakadim terisi, barulah elektron tersebut berapasangan dengan elektro yang mempunyai spin berbeda. Misalkan lega atom oksigen yang memiliki 8 elektron. Konfigurasinya berdasarkan aturan Aufbau ialah 1s2 2s2 2p4. Hal ini berarti suka-suka 2 elektron yang meninggali subkulit 1s, 2 elektron menghuni subkulit 2s, dan 4 elektron menghuni subkulit 2p. Sementara menurut Aturan Hund, konfigurasinya bagaikan berikut Bersumber gambar tersebut terlihat bahwa elketron mengisi subkulit secara seorang-seorang dengan spin yang sama terlebih dahulu. Dapatkan update berita saringan dan breaking news setiap hari berpokok Mari bergabung di Grup Benang kuningan “ News Update”, caranya klik link kemudian join. Anda harus install tuntutan Telegram bahkan dulu di ponsel.

diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah